Several great educational opportunities this August and September are available to Waupaca County farmers and Ag professionals, so mark your calendar and plan to attend (look inside for more information on each). They include:

August 12-14
WI Farm Technology Days
Portage County
(go 3 miles south at Stoplight by Fleet Farm in Stevens Point)

August 20-24
Waupaca County Fair
Fairgrounds, Weyauwega

August 27
UW Agronomy/Soils Field Day
Arlington Ag Research Station

September 3
Farm Bill Dairy Margin Protection Program
Crystal Falls, New London

Upcoming Events:

- **Aug 12-14**
 WI Farm Technology Days
 3 Mi South of Fleet in Stevens Point
- **August 20-24**
 Waupaca County Fair
 Fairgrounds, Weyauwega
- **Sept 3**
 Dairy Margin Protection Program
 Crystal Falls, New London
- **Sept 5**
 Ag Lender/Farm Managers Conf
 Liberty Hall Kimberly
- **Sept 6**
 Waupaca Co. UW-Extension
 Master Gardener Plant Sale
 Fairgrounds, Weyauwega
- **Sept 10 - Oct 1**
 Corn Silage Dry Down Days
 Clintonville Elevator/FVTC, Clintonville
 Larsen Coop Feed Mill, Weyauwega

Dairy Margin Protection Program

Wednesday, September 3
Crystal Falls, New London

The new farm bill announced earlier this year offers a “safety-net” for dairy farms called the Dairy Margin Protection Program (DMPP). This voluntary program is designed to pay participating dairy farms when income over feed costs falls below a certain (insured) level. However, you have to sign-up to be covered, and the cost will vary depending on the amount of milk and the margin each farm wants to protect.

To learn more about this new federal dairy program, including the latest on enrollment plans and procedures, plan to attend the local UW-Extension program on Wednesday afternoon, September 3 at Crystal Falls in New London. A free soup & sandwich lunch buffet will be available starting at noon, with the program to follow from 1-3 PM. Dr. Mark Stephenson, Extension Dairy Policy Specialist at UW-Madison will be the guest speaker.

Although there is no cost to attend, advance registration is encouraged to ensure adequate food and materials are available. Register by calling the Waupaca County UW-Extension office (715-258-6231) or by sending an email to dana.nelson@ces.uwex.edu

Will Late Planted Corn Make It?

4-5

WFTD 2014

6

Corn Silage Dry Down Days

7

Pricing Corn Silage

8-9

New County Ag Census Data

10-15

DMPP Sign-Up

18

“Gratitude bestows reverence which allows us to encounter everyday epiphanies, those transcendent moments of awe that change forever how we experience life and our world”

- John Milton -
The New DAIRY MARGIN PROTECTION PROGRAM

The new farm bill announced earlier this year offers a “safety-net” for dairy farms called the Dairy Margin Protection Program (DMPP). This voluntary program is designed to pay participating dairy farms when their income over feed costs falls below a certain (insured) level. However, you have to sign-up to be covered, and the cost will vary depending on the amount of milk and the margin each farm wants to protect.

To learn more about this new dairy program, including the latest on enrollment plans and procedures, contact one of the following UW-Extension host sites in Northeast/Central WI to reserve a seat. Dr. Mark Stephenson, Extension Dairy Policy Specialist from UW-Madison will be the featured speaker at all locations (some sites may require a small fee to help cover costs, so be sure to ask if there is any cost when you call to register).

Don’t wait, call today and reserve your seat for this important dairy meeting!

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Sept 2</td>
<td>9:45 am</td>
<td>Abbotsford</td>
<td>Heather Schlessor, Dairy Agent, UWEX – Marathon County 715-261-1239</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Sept 4</td>
<td>9:45 am</td>
<td>Kiel</td>
<td>Scott Gunderson, Dairy Agent, UWEX – Manitowoc County 920-683-4175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Sept 3</td>
<td>9:45 am</td>
<td>Cecil Village Hall</td>
<td>Jamie Patton, Agriculture Agent, UWEX – Shawano County 715-529-8471</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Sept 3</td>
<td>1:15 pm</td>
<td>New London</td>
<td>Greg Blonde, Agriculture Agent, UWEX – Waupaca County 715-258-6231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Sept 4</td>
<td>1:15 pm</td>
<td>Green Bay</td>
<td>Liz Buniverse, Agriculture Agent, UWEX – Brown County 920-391-4612</td>
</tr>
</tbody>
</table>

Waupaca County – Wisconsin

Ranked items among the 72 state counties and 3,079 U.S. counties, 2012

<table>
<thead>
<tr>
<th>Market Value of Agricultural Products Sold (S,000)</th>
<th>Quantity</th>
<th>State Rank</th>
<th>Universe 1</th>
<th>U.S. Rank</th>
<th>Universe 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,003</td>
<td>26</td>
<td>72</td>
<td>719</td>
<td>72</td>
<td>5,077</td>
</tr>
<tr>
<td>$50,004</td>
<td>44</td>
<td>72</td>
<td>513</td>
<td>72</td>
<td>3,073</td>
</tr>
<tr>
<td>$10,003</td>
<td>26</td>
<td>72</td>
<td>719</td>
<td>72</td>
<td>5,077</td>
</tr>
<tr>
<td>$15,000</td>
<td>20</td>
<td>72</td>
<td>513</td>
<td>72</td>
<td>3,073</td>
</tr>
<tr>
<td>$25,000</td>
<td>80</td>
<td>72</td>
<td>513</td>
<td>72</td>
<td>3,073</td>
</tr>
<tr>
<td>$35,000</td>
<td>30</td>
<td>72</td>
<td>513</td>
<td>72</td>
<td>3,073</td>
</tr>
<tr>
<td>$45,000</td>
<td>60</td>
<td>72</td>
<td>719</td>
<td>72</td>
<td>5,077</td>
</tr>
<tr>
<td>$55,000</td>
<td>26</td>
<td>72</td>
<td>719</td>
<td>72</td>
<td>5,077</td>
</tr>
<tr>
<td>$65,000</td>
<td>16</td>
<td>72</td>
<td>513</td>
<td>72</td>
<td>3,073</td>
</tr>
<tr>
<td>$75,000</td>
<td>12</td>
<td>72</td>
<td>513</td>
<td>72</td>
<td>3,073</td>
</tr>
</tbody>
</table>

TOP CROP ITEMS (area)

- Corn for grain: 42,696
- Forage land used for hay and haylage, grass seed, and greenhouse production: 9,180
- Soybeans: 3,174
- Wheat for grain, all: 2,340

TOP LIVESTOCK INVENTORY ITEMS (number)

- Cattle and calves: 52,073
- Hogs: 4,102
- Sheep and other small ruminants: 3,074
- Poultry (chickens): 2,051
- Beef cattle: 1,843

Other County Highlights, 2012

- **Economic Characteristics**
 - Farms by value of sales
 - Less than $1,500: 20
 - $1,500 to $4,999: 115
 - $5,000 to $9,999: 91
 - $10,000 to $19,999: 81
 - $20,000 to $49,999: 115
 - $50,000 to $99,999: 34
 - $100,000 to $249,999: 115
 - $250,000 to $499,999: 69
 - $500,000 to $999,999: 29
 - $1,000,000 to $2,499,999: 5
 - $2,500,000 or more: 3
- Total farm production expenses ($1,000): $132,741
- Average per farm ($): $4,262
- Average per farm ($): 34,239

- **Operating Characteristics**
 - Principal operators by occupation: (1,000)
 - Farmers: 1,072
 - Nonfarm: 117
 - Average age of principal operators (years): 57.0
 - All operators by race: (1,000)
 - American Indian or Alaska Native: 3
 - Asian: 2
 - Black or African American: 4
 - Native Hawaiian or Other Pacific Islander: 1
 - White, not Hispanic or Latino: 1,720
 - All operators of Spanish, Hispanic, or Latino Origin: 15

See “Census of Agriculture, Volume 1, Geographic Area Series” for complete footnotes, explanations, definitions, and methodology.

Represents data: 10% sample-based, small area estimation data for geographic areas.

1 Universe is number of counties in state or U.S. with item. Data were collected for a maximum of three operators per farm.

Greg Blonde, UW-Extension Agriculture Agent...715-258-6230 (ext 2) or greg.blonde@ces.uwex.edu
AGRONOMY/SOILS FIELD DAY
Wednesday, August 27, 2014
Arlington Agricultural Research Station

AGENDA
- **8:00** Registration & Coffee
- **8:30** Soils, Forages, and Greenhouse Gas Tours depart
- **10:30** Grains, Forages, and Greenhouse Gas Tours depart
- **12:00** Lunch provided by Badger Crops Club ($5 donation)
Demonstration of UAV with aerial photography
- **1:00** Grains and Soils Tours depart

Note: All tours are only offered twice. Tours depart promptly as scheduled.

TOURS
Grains
- Herbicide resistance in Wisconsin corn and soybean (Vince Davis)
- Take action
- Prescription seeding rates and climate impact on Midwestern soybean (Shawn Conley & Ethan Smith)
- Maximum yield systems research for corn (Joe Lauer)
- Going “old school” to manage corn rootworms (Bryan Jensen)

Soils
- Strategies for crop residue management (Francisco Arriaga)
- Nitrogen sensor research for corn and wheat
- Using cover crops in organic and conventional soybean production (Erin Silva)

Greenhouse Gases & Wisconsin Agriculture
- Introduction to greenhouse gases (Matt Rauch)
- Greenhouse gas emissions from three crop rotations in Wisconsin (Maciek Kazula & Joe Lauer)
- Influence of weed management on nitrous oxide emissions (Becky Bulley & Vince Davis)
- Greenhouse gases from dairy-based rotations (Sarah Collier & Matt Rauch)
- Greenhouse gases and bushel production (Randy Jackson)

Forages
- Perennial forages are essential for long-term carbon storage in Wisconsin’s prairie soils (Gregg Sanford)
- Cautions when harvesting wet forage (Dan Undersander)
- What level of weed control is needed to ensure alfalfa establishment? (Mark Renz)
- Common alfalfa diseases for 2014 and management options (Damon Smith)

Visit exhibits between tours and during lunch: Apps for Ag; Nutrient & Pest Management Program; SnapPlus; and more!

The Arlington Research Station is located on Hwy. 51, about 5 miles south of Arlington and 15 miles north of Madison. Watch for Field Day signs. GPS coordinates: 43.300467, -89.345534

For more Information contact the Dept. of Agronomy 608/262-1390 or the Dept. of Soil Science 608/262-0485

In the event of rain, presentations will be held inside.

Sponsored by the UW-Madison College of Agricultural and Life Sciences and UW-Extension.

► Certified Crop Advisors: 6.0 CEU credits requested ◄
July 2014

Predicting Maturity Date of Late-Planted and Uneven Corn
Joe Lauer, Corn Agronomist

During cool growing seasons, especially when planting is delayed due to wet spring conditions, growers are concerned about whether their corn is vulnerable and will reach maturity before normal frost dates. Often the range in planting dates has implications at harvest time, especially for silage because grain and dairy producers often irrigate the side of corn in fields that are borderline for development (Figure 1).

![Figure 1. Wisconsin corn planting progress (Data source: USDA-NASS).](image)

Most hybrids require about 55 to 60 days to develop from the silk stage to physiological maturity. Hybrid maturity differences in development time occur primarily from emergence to silking, not from silking to maturity (Figure 3). Growers are concerned when corn does not reach the silk stage (R1-Figure 2) until early August or later. Killing frosts can easily occur by late September so corn silking in early August would not be safe from major yield reductions due to frost until October.

Figures 4 and 5 describe typical development of corn silage yield and quality and of a corn kernel. At the dent stage (R5), corn has accumulated 75-85% of silage yield and 90 days RM.

![Figure 2. Corn silking (R1). Photo by W. Hoffman.](image)

2013 Corn Silage Pricing Decision Aid

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimated</th>
<th>Actual</th>
<th>(To use estimated yield)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yield Information
- Grain Yield Bushels/Acre
- Silage % DM
- Corn: Stems/Tons Acre (Wet Basis)

Price Perspective
- Local Market Price for No-2 Corn at 15.5% moisture as Buyer or Seller
- Local Market Price per ton for poor quality/broken forage to Buyer (a)

Grain Harvest Costs (a)
- Combined Cost/Acre
- Trucking Costs/Corn yield (bushel) + $/Bushel
- Storage Cost/Acre = Corn yield (bushel) + $/bushel/month x months
- Harvest and Storage Loss (c) = Estimated % loss

Fertilizer Value of Harvested Stover
- Phosphorus Value = Pounds P2O5/Ton Dry Matter (from pub A2805)
- Potassium Value = Pounds K2O/Ton Dry Matter (from pub A2805)

Quality Adjustments for Silage (g)
- Starch Adjustment/DM Silage: % Starch (DM Basis)
- Local Corn Price/Bushel
- NEF Digestibility Adjustment DM Silage
- Silage NDF (dry matter)
- Milk Price/Corn
- Quality Adjustment (part ton DM)
- Silage Base Price Estimate (part ton DM)
- Value of Standing Corn/Ton of Silage W/O Quality Adjustment (Wet Basis)
- Value of Standing Corn/Ton of Silage W/O Quality Adjustment (Dry Matter Basis)

Value of Corn Silage Based on Harvest and Storage (Cost Responsibility Between Seller and Buyer)
- Please indicate below which costs are the responsibility of the buyer. Silage harvest costs can be changed in lines 15-18:

 - Buyer Pays Flat (unchanged means seller assumes cost):
 - Chickens $0
 - Fencing $0
 - Harvest and Storage Loss $119.39
 - Harvesting & Storage Costs/Acre $188.39
 - Value of Corn Silage/Ton with All Adjustments (Dry Matter) $127.58
 - Value of Corn Silage/Ton with All Adjustments (Wet Basis) $44.78
 - Value of Corn Silage/Ton with All Adjustments (Wet Basis) $44.78

[Greg Blonde, UW-Extension Agriculture Agent...715-258-6230 (ext 2) or greg.blonde@ces.uwex.edu](mailto:greg.blonde@ces.uwex.edu)
Pricing Corn Silage
Joe Lauer and Ryan Sterry, Corn Agronomist and St. Croix County Agent

Pricing corn silage is a difficult decision because it often comes at a time when emotions between sellers and buyers are high. The seller has the opportunity to sell a corn field for either silage or grain and incorporate the fertilizer value of the stover back into the field. The buyer has the opportunity to buy a corn field for silage or buy grain from the market and purchase low-quality straw (wheat or corn stover thereafter) to formulate rations.

Arriving at a fair price and being able to take into account the markets (grain, straw, milk and silage), fertilizer, harvesting and quality costs is a difficult decision. Somewhere in the middle of the seller and buyer perspectives negotiations should be able to arrive at a fair price. The Sterry et al. spreadsheet (see http://corn.agronomy.wisc.edu/Seison/TPS.xls) accounts for both the seller and buyer perspectives to arrive at a fair price for corn silage. This article performs a sensitivity analysis of this spreadsheet.

The assumptions and initial values typical for the market conditions heading into the 2013 harvest are shown on page 2. To produce the sensitivity analysis in Table 1, one input value at a time was changed on the spreadsheet for grain price, milk price, grain yield, stalk content, straw price and NDFD. This can lead to somewhat ambiguous conclusions. For example, often the seller receives a lower price than what the buyer must pay for grain, however, in this example the seller and buyer grain prices are held the same. Also, when one quality measure moves in a certain direction (i.e. stalk content) other measures (i.e. grain yield or NDFD) are affected as well. In 2013 many corn fields were late planted and affected by drought which affects yield, stalk content and NDFD.

Grain prices between $4 and $4.75 per bushel affect corn silage price from $28 to $51 per ton wet. Milk price affects the buyer decision much more than the seller. Low grain yields reduce the price of standing corn silage as does lower stalk content. Straw price does not affect the seller perspective, but does affect the buyer perspective of a standing corn silage field.

Table 1. Sensitivity analysis of seller and buyer perspectives using the Sterry et al. spreadsheet for calculating the value of standing corn silage (ST) with quality adjustments.

<table>
<thead>
<tr>
<th>Wet Basis (S%u)</th>
<th>Dry Matter Basis</th>
<th>Seller</th>
<th>Buyer</th>
<th>Seller</th>
<th>Buyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain price ($/bu)</td>
<td>$7.00</td>
<td>50</td>
<td>51</td>
<td>143</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>$6.00</td>
<td>45</td>
<td>45</td>
<td>122</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>$5.00</td>
<td>35</td>
<td>39</td>
<td>103</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>$4.00</td>
<td>28</td>
<td>33</td>
<td>80</td>
<td>94</td>
</tr>
<tr>
<td>Milk price ($/cwt)</td>
<td>$24</td>
<td>36</td>
<td>39</td>
<td>103</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>$18</td>
<td>35</td>
<td>39</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>$12</td>
<td>35</td>
<td>38</td>
<td>99</td>
<td>108</td>
</tr>
<tr>
<td>Grain yield (bu/1)</td>
<td>175</td>
<td>35</td>
<td>39</td>
<td>99</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>35</td>
<td>39</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>35</td>
<td>38</td>
<td>99</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>33</td>
<td>36</td>
<td>93</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>29</td>
<td>32</td>
<td>83</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>23</td>
<td>27</td>
<td>65</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>12</td>
<td>17</td>
<td>35</td>
<td>48</td>
</tr>
<tr>
<td>Straw price (ST)</td>
<td>$100</td>
<td>35</td>
<td>42</td>
<td>101</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>$75</td>
<td>35</td>
<td>59</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>Stalk content (%)</td>
<td>34%</td>
<td>40</td>
<td>43</td>
<td>133</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>29%</td>
<td>35</td>
<td>39</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>24%</td>
<td>31</td>
<td>34</td>
<td>88</td>
<td>98</td>
</tr>
<tr>
<td>NDFD (%)</td>
<td>68%</td>
<td>36</td>
<td>39</td>
<td>102</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>58%</td>
<td>35</td>
<td>39</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>48%</td>
<td>35</td>
<td>38</td>
<td>100</td>
<td>109</td>
</tr>
</tbody>
</table>

* The normal 2013 assumptions used in the spreadsheet example shown on page 2, because he has the option to buy wheat straw. NDFD had little effect on corn silage price in this spreadsheet. Users of this spreadsheet need to input their own data for the values used in the calculations.

Figure 5. Typical corn kernel development in Wisconsin.

(silking) date of the field. For silage planted early, add 42-47 days on to this date to predict 50% kernel milk; while for grain, add 55-60 days to predict maturity. These dates are guidelines which will require further in-season decisions as the season unfolds.

To predict whether corn will mature before frost note the hybrid maturity, planting date and tasseling date.

Figure 6. Normal pattern of corn forage and grain development in Wisconsin.
Be Sure to Visit Farm Technology Days!

PORTAGE COUNTY
August 12-14

This 3-day outdoor event showcases the latest improvements in production agriculture...many practical applications of recent research findings & technological developments.

EXHIBITS
• UW-Extension’s Applied Technology Center
• Family Living Tent
• Progress Pavilion
• Youth Tent
• Arts & Crafts
• Field Demonstrations
• Commercial Exhibitors

HOST FARM
Blue Top Farms and Feltz Farms will host WFTD 2014. They are located just east of Plover, south of Highway HH.

www.wifarmtechnologydays.com
Visit the website for more information on exhibitors, demonstrations and directions to the show.

Be Sure to Visit Farm Technology Days!

August 12-14

This 3-day outdoor event showcases the latest improvements in production agriculture...many practical applications of recent research findings & technological developments.

EXHIBITS
• UW-Extension’s Applied Technology Center
• Family Living Tent
• Progress Pavilion
• Youth Tent
• Arts & Crafts
• Field Demonstrations
• Commercial Exhibitors

HOST FARM
Blue Top Farms and Feltz Farms will host WFTD 2014. They are located just east of Plover, south of Highway HH.

www.wifarmtechnologydays.com
Visit the website for more information on exhibitors, demonstrations and directions to the show.